

Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones and develop understanding of place value.
Children have opportunities to explore partitioning numbers in different ways.
e.g. $7=6+1,7=5+2,7=4+3=$

Children should begin to understand addition as combining groups and counting on.

Vocabulary

Addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals = same as, most, pattern, odd, even, digit, counting on.

Addition

Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find $17+3=20,70+30=100$ They should use concrete objects such as bead strings and number lines to explore missing numbers $-45+=50$.

As well as number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used.

Children should learn to check their calculations, by using the inverse.
They should continue to see addition as both combining groups and counting on.
They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=$ $20+3=10+13$.

Vocabulary

+, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, Tens, ones, partition Near multiple of 10, tens boundary, More than, one more, two more... ten more... one hundred more

Year 3

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally.
Children should continue to partition numbers in different ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. Add the nearest multiple of 10 , then adjust such as $63+29$ is the same as $63+30-1$;
counting on by partitioning the second number only such as $72+31=72+30+1=102+1=103$
Manipulatives can be used to support mental imagery and conceptual understanding. Children need to be shown how these images are related eg.
What's the same? What's different?

$\square \square$
$\square \square \square$
$\square \square$

Vocabulary

Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange
See also Y1 and Y2

Generalisations

- True or false? Addition makes numbers bigger.
- True or false? You can add numbers in any order and still get the same answer.
(Links between addition and subtraction)
When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.

Another example here...

Some Key Questions

How many altogether? How many more to make...? I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more... What can you see here?
Is this true or false?
What is the same? What is different?

Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd + odd = even; odd + even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

Some Key Questions

How many altogether? How many more to make...? How many more is... than...? How much more is...?
Is this true or false?
If I know that $17+2=19$, what else do \mid know? (e.g. $2+17=$
$19 ; 19-17=2 ; 19-2=17 ; 190-20=170$ etc).
What do you notice? What patterns can you see?

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
Odd + odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

What do you notice? What patterns can you see?
When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line?

Addition		
Year 4	Year 5	Year 6
Mental Strategies Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards: 124 - 47, count back 40 from 124, then 4 to 80 , then 3 to 77 - Reordering: $28+75,75+28$ (thinking of 28 as $25+3$) - Partitioning: counting on or back: $5.6+3.7,5.6+3+$ $0.7=8.6+0.7$ - Partitioning: bridging through multiples of 10: 6070 $4987,4987+13+1000+70$ - Partitioning: compensating $-138+69,138+70-1$ - Partitioning: using 'near' doubles - $160+170$ is double 150, then add 10, then add 20, or double 160 and add 10 , or double 170 and subtract 10 - Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15pm? - Using known facts and place value to find related facts. Vocabulary add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.	Mental Strategies Children should continue to count regularly, on and back, now including steps of powers of 10 . The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards in tenths and hundredths: $1.7+0.55$ - Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$ - Partitioning: counting on or back $-540+280,540+200+$ 80 - Partitioning: bridging through multiples of 10: - Partitioning: compensating: $5.7+3.9,5.7+4.0-0.1$ - Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1 - Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20? - Using known facts and place value to find related facts. Vocabulary tens of thousands boundary, Also see previous years Generalisation Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 . What do you notice about the differences between consecutive square numbers? Investigate $\mathrm{a}-\mathrm{b}=(\mathrm{a}-1)-(\mathrm{b}-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different?	Mental Strategies Consolidate previous years. Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5$; $(20-5) \times 3=45$ Vocabulary See previous years Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?

	Can you convince me?

Generalisations
Investigate when re-ordering works as a strategy for
subtraction. Eg. 20-3-10=20-10-3, but 3-20-10
would give a different answer.

Some Key Questions
What do you notice?
What's the same? What's different
Can you convince me?
How do you know?

Year 1
Mental Strategies
Children should experience regular counting on and back
from different numbers in 1s and in multiples of 2,5 and
10.
Children should memorise and reason with number
bonds for numbers to 20, experiencing the $=\operatorname{sign}$ in
different positions.
They should see addition and subtraction as related
operations. E.g. $7+3=10$ is related to $10-3=7$,
understanding of which could be supported by an image
like this.

Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones.

Children should begin to understand subtraction as both taking away and finding the difference between, and should find small differences by counting on.

Vocabulary

Subtraction, subtract, take away, distance between, difference between, more than, minus, less than, equals = same as, most, least, pattern, odd, even, digit,

Subtraction

Mental Strategies

Children should count regularly, on and back, in steps of 2, 3, 5 and 10. Counting back in tens from any number should lead to subtracting multiples of 10 .
Number lines should continue to be an important image to support thinking, for example to model how to subtract 9 by adjusting.

Children should practise subtraction to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $10-7=3$ and $7=10-3$ to calculate $100-70=30$ and $70=100-30$.

As well as number lines, 100 squares could be used to model calculations such as $74-11,77-9$ or $36-14$, where partitioning or adjusting are used. On the example above, 1 is in the bottom left corner so that 'up' equates to 'add'.

Children should learn to check their calculations, including by adding to check.
They should continue to see subtraction as both take away and finding the difference, and should find a small difference by counting up.
They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=$ $20+3=10+13$.

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.
Children should continue to partition numbers in difference ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. counting up (difference, or complementary addition) for 201 198; counting back (taking away / partition into tens and ones) for 201-12.

Calculators can usefully be introduced to encourage fluency by using them for games such as 'Zap' [e.g. Enter the number 567. Can you 'zap' the 6 digit and make the display say 507 by subtracting 1 number?]
The strategy of adjusting can be taken further, e.g. subtract 100 and add one back on to subtract 99 . Subtract other near multiples of 10 using this strategy.

Vocabulary

Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange See also Y1 and Y2

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
Odd - odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

What do you notice? What patterns can you see?

Generalisations

- True or false? Subtraction makes numbers smaller
- When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
Children could see the image below and consider, "What can you see here?" e.g

3 yellow, 1 red, 1 blue. $3+1$ +1 = 5
2 circles, 2 triangles, 1
square. $2+2+1=5$
I see 2 shapes with
curved lines and 3 with
straight lines. $5=2+3$

$5=3+1+1=2+2+1=$
$2+3$

Some Key Questions

How many more to make...? How many more is... than...? How much more is...? How many are left/left over? How many have gone? One less, two less, ten less... How many fewer is... than...? How much less is...?
What can you see here?
Is this true or false?

Vocabulary

Subtraction, subtract, take away, difference, difference between, minus
Tens, ones, partition
Near multiple of 10, tens boundary
Less than, one less, two less... ten less... one hundred less More, one more, two more... ten more... one hundred more Generalisation

- Noticing what happens when you count down in tens (the digits in the ones column stay the same)
- Odd - odd $=$ even; odd - even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

(-)(:) ():) () () () (:)
 (-)(:) (:) (:)
 ():() () () $)$

$$
15+5=20
$$

Some Key Questions

How many more to make...? How many more is... than...? How much more is....? How many are left/left over? How many fewer is... than...? How much less is...?
Is this true or false?
If I know that $7+2=9$, what else do I know? (e.g. $2+7=9 ; 9$ $7=2 ; 9-2=7 ; 90-20=70$ etc).
What do you notice? What patterns can you see?

When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line

Subtraction		
Year 4	Year 5	Year 6
Mental Strategies Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$. The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80 , then 3 to 77 - Reordering: $28+75,75+28$ (thinking of 28 as $25+3$) - Partitioning: counting on or back: $5.6+3.7,5.6+3+$ $0.7=8.6+0.7$ - Partitioning: bridging through multiples of 10: 6070 $4987,4987+13+1000+70$ - Partitioning: compensating $-138+69,138+70-1$ - Partitioning: using 'near' doubles $-160+170$ is double 150, then add 10, then add 20, or double 160 and add 10 , or double 170 and subtract 10 - Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15pm? - Using known facts and place value to find related facts. Vocabulary add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.	Mental Strategies Children should continue to count regularly, on and back, now including steps of powers of 10 . The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. They should be encouraged to choose from a range of strategies: - Counting forwards and backwards in tenths and hundredths: $1.7+0.55$ - Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$ - Partitioning: counting on or back $-540+280,540+200+$ 80 - Partitioning: bridging through multiples of 10: - Partitioning: compensating: $5.7+3.9,5.7+4.0-0.1$ - Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1 - Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20? - Using known facts and place value to find related facts. Vocabulary tens of thousands boundary, Also see previous years Generalisation Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 . What do you notice about the differences between consecutive square numbers? Investigate $\mathrm{a}-\mathrm{b}=(\mathrm{a}-1)-(\mathrm{b}-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different?	Mental Strategies Consolidate previous years. Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5 ;(20-5) \times 3=45$ Vocabulary See previous years Generalisations Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?

- Can you convince me?

Generalisations
Investigate when re-ordering works as a strategy for
subtraction. Eg. 20-3-10=20-10-3, but 3-20-10
would give a different answer.

Some Key Questions
What do you notice?
What's the same? What's different
Can you convince me?
How do you know?

Multiplication		
Year 1	Year 2	Year 3
Mental Strategies	Mental Strategies	Mental Strategies
Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10. Children should memorise and reason with numbers in 2, 5 and 10 times tables They should see ways to represent odd and even numbers. This will help them to understand the pattern in numbers.	Children should count regularly, on and back, in steps of 2, 3, 5 and 10. Number lines should continue to be an important image to support thinking, for example Children should practise times table facts $\begin{aligned} & 2 \times 1= \\ & 2 \times 2= \\ & 2 \times 3= \end{aligned}$ Use a clock face to support understanding of counting in 5 s . Use money to support counting in $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 50 \mathrm{~s}$	Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of 1/10. The number line should continue to be used as an important image to support thinking, and the use of informal jottings and drawings to solve problems should be encouraged. Children should practise times table facts $\begin{aligned} & 3 \times 1= \\ & 3 \times 2= \\ & 3 \times 3= \end{aligned}$
Children should begin to understand multiplication as scaling in terms of double and half. (e.g. that tower of cubes is double the height of the other tower)	Vocabulary multiple, multiplication array, multiplication tables / facts groups of, lots of, times, columns, rows Generalisation	Vocabulary partition grid method inverse
Vocabulary	Commutative law shown on array (video)	Generalisations
Ones, groups, lots of, doubling repeated addition groups of, lots of, times, columns, rows longer, bigger, higher etc times as (big, long, wide ...etc)	Repeated addition can be shown mentally on a number line Inverse relationship between multiplication and division. Use an array to explore how numbers can be organised into groups.	Connecting $\mathrm{x} 2, \mathrm{x} 4$ and x 8 through multiplication facts Comparing times tables with the same times tables which is ten times bigger. If $4 \times 3=12$, then we know $4 \times 30=120$. Use place value counters to demonstrate this.
Generalisations Understand 6 counters can be arranged as $3+3$ or $2+2+2$		When they know multiplication facts up to $\times 12$, do they know what $\times 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?)
Understand that when counting in twos, the numbers are	Some Key Questions	Some Key Questions
always even.	What do you notice? What's the same? What's different?	What do you notice? What's the same? What's different?
Some Key Questions	Can you convince me?	Can you convince me?
Why is an even number an even number?		
What do you notice? What's the same? What's different? Can you convince me? How do you know?		

Mental Strategies
 Children should continue to count regularly, on and back,

 now including multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$.Become fluent and confident to recall all tables to $\times 12$
Use the context of a week and a calendar to support the 7 times table (e.g. how many days in 5 weeks?)
Use of finger strategy for 9 times table.
Multiply 3 numbers together
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.
They should be encouraged to choose from a range of strategies:

- Partitioning using $\times 10, \times 20$ etc
- Doubling to solve $x 2, x 4, x 8$
- Recall of times tables
- Use of commutativity of multiplication

Vocabulary

Factor

Generalisations

Children given the opportunity to investigate numbers multiplied by 1 and 0 .

When they know multiplication facts up to $\times 12$, do they know what $\times 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?)

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Year 6

Mental Strategies

Consolidate previous years.
Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5$; $(20-5) \times 3=45$

They should be encouraged to choose from a range of strategies to solve problems mentally:

- Partitioning using $\times 10, \times 20$ etc
- Doubling to solve $\times 2, x 4, x 8$
- Recall of times tables

Use of commutativity of multiplication
If children know the times table facts to 12×12. Can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table)

Vocabulary

See previous years
common factor

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.
Understanding the use of multiplication to support conversions between units of measurement.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Vocabulary

share, share equally, one each, two each..., group, groups of, lots of, array

Generalisations

- True or false? I can only halve even numbers.
- Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing.

Some Key Questions

How many groups of...?
How many in each group?
Share... equally into...
What can do you notice?

Vocabulary

group in pairs, 3 s ... 10s etc
equal groups of
divide, \div, divided by, divided into, remainder

Generalisations

Noticing how counting in multiples if 2,5 and 10 relates to the number of groups you have counted (introducing times tables)

An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)

Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

Some Key Questions

How many 10 s can you subtract from 60 ?
I think of a number and double it. My answer is 8 . What was my number?
If $12 \times 2=24$, what is $24 \div 2$?
Questions in the context of money and measures (e.g. how many 10 p coins do I need to have 60 p? How many 100 ml cups will I need to reach 600 ml ?)

Some Key Questions

Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have $£ 54$. How many $£ 10$ teddies can you buy?)
What is the missing number?

$$
\begin{aligned}
17 & =5 \times 3+ \\
\ldots & =2 \times 8+1
\end{aligned}
$$

Mental Strategies

Children should experience regular counting on and back from different numbers in multiples of $6,7,9,25$ and
1000.

Children should learn the multiplication facts to 12×12.

Vocabulary

see years 1-3
divide, divided by, divisible by, divided into
share between, groups of
factor, factor pair, multiple
times as (big, long, wide ...etc)
equals, remainder, quotient, divisor
inverse

Towards a formal written method

Alongside pictorial representations and the use of models and images, children should progress onto short division using a bus stop method.

Place value counters can be used to support children apply their knowledge of grouping. Reference should be made to the value of each digit in the dividend.

Each digit as a multiple of the divisor

'How many groups of 3 are there in the hundreds column?'
'How many groups of 3 are there in the tens column?' 'How many groups of 3 are there in the units/ones column?'

Year 5
Mental Strategies
Children should count regularly using a range of multiples, and

Children should count regularly using a range of multiples, and powers of 10,100 and 1000, building fluency.
Children should practice and apply the multiplication facts to 12×12.

Vocabulary

see year 4
common factors
prime number, prime factors
composite numbers
short division
square number
cube number
inverse
power of

Generalisations

The = sign means equality. Take it in turn to change one side of this equation, using multiplication and division, e.g.
Start: $\mathbf{2 4 = 2 4}$
Player 1: $\mathbf{4 \times 6 = 2 4}$
Player 2: $\mathbf{4 \times 6 = 1 2 \times 2}$
Player 1: 48 $\div \mathbf{2}=\mathbf{1 2 \times 2}$

Sometimes, always, never true questions about multiples and divisibility. E.g.:

- If the last two digits of a number are divisible by 4 , the number will be divisible by 4 .
- If the digital root of a number is 9 , the number will be divisible by 9 .
- When you square an even number the result will be divisible by 4 (one example of
 'proof' shown left)

Mental Strategies

Children should count regularly, building on previous work in previous years.
Children should practice and apply the multiplication facts to 12×12.

Vocabulary

see years 4 and 5

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4 , it will also be divisible by 12 . (also see year 4 and 5 , and the hyperlink from the Y5 column)

Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer.

Some Key Questions for Year 4 to 6

What do you notice?

What's the same? What's different?

Can you convince me?

How do you know?

When children have conceptual understanding and fluency using the bus stop method without remainders, they can then progress onto 'carrying' their remainder across to the next digit.

Generalisations

True or false? Dividing by 10 is the same as dividing by 2 and then dividing by 5 . Can you find any more rules like this?
Is it sometimes, always or never true that $\square \div \Delta=\Delta \div \square$?

Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \times 3=6$, so $3 \times 2=6,6 \div 2=3,60 \div 20=3,600 \div 3=200$ etc.

Sometimes, always, never true questions about multiples and divisibility. (When looking at the examples on this
page, remember that they may not be 'always true'!) E.g.:

- Multiples of 5 end in 0 or 5 .
- The digital root of a multiple of 3 will be 3,6 or 9.
- The sum of 4 even numbers is divisible by 4 .

