Grateley Primary School

Teamwork, Respect, Enthusiasm, Excellence

Calculation Policy

Year 1-6

EYFS Guidance

Maths Manager - Mrs Amelia Norman

Addition

$+=$ signs and missing numbers

Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
$2=1+1$
$2+3=4+1$

Missing numbers need to be placed in all possible

$$
\begin{array}{ll}
3+4=\square & \square=3+4 \\
3+\square=7 & 7=\square+4
\end{array}
$$

Counting and Combining sets of Objects

Combining two sets of objects (aggregation) which will
Missing number problems e.g $14+5=10+\square \quad 32+\square+\square=100$ Continue to use numberlines to develop understanding of:

$$
23+12=23+10+2
$$

$$
=33+2
$$

$$
=35
$$ places. progress onto adding on to a set (augmentation)

090
0
0
0

$$
0.0
$$

12 $35=1+\square+5$

It is valuable to use a range of representations (also see Y1). Counting on in tens and ones

Partitioning and bridging through 10.
The steps in addition often bridge through a multiple of 10
e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5.
$8+7=15$

Adding 9 or 11 by adding 10 and adjusting by 1
e.g. Add 9 by adding 10 and adjusting by 1
$35+9=44$

Towards a Written Method

Partitioning in different ways and recombine
$47+25$

Leading to exchanging:
72

Expanded written method
$40+7+20+5=$

$$
\begin{array}{r}
40+7 \\
+\frac{20+5}{60+12}=72
\end{array}
$$

$40+20+7+5=$
$60+12=72$

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.

Partition into tens and ones

Partition both numbers and recombine.
Count on by partitioning the second number only e.g.
$247+125=247+100+20+5$

$$
\begin{aligned}
& =347+20+5 \\
& =367+5 \\
& =372
\end{aligned}
$$

Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10.

Towards a Written Method

Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)

$$
\begin{aligned}
& 200+40+7 \\
& \frac{100+20+5}{300+60+12}=372
\end{aligned}
$$

$$
247
$$

$$
+\frac{125}{12}
$$

$$
\frac{300}{372}
$$

Leading to children understanding the exchange between tens and ones.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method

Obj Gui Year 4	Ex

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.
Written methods (progressing to 4-digits)
Expanded column addition modelled with place value counters, progressing to calculations with 4digit numbers.

Compact written method
Extend to numbers with at least four digits.

2634
+4517
7151

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits)
72.8
$+54.6$
127.4

11

Missing number/digit problems:
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$

Written methods (progressing to more than 4-digits)

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.
172.83
$\begin{array}{r}+\quad 54.68 \\ \hline 227.51 \\ \hline 1\end{array}$
111
Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Missing number/digit problems:
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5 , progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places

Problem Solving and reasoning

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Subtraction

Missing number problems e.g. $7=\square-9 ; 20-\square=9$;
$15-9=\square ; \square-\square=11 ; 16-0=\square$
Use concrete objects and pictorial representations. If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.

Understand subtraction as take-away:

Understand subtraction as finding the difference counting on and back:

The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation.
The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings

Missing number problems e.g. $52-8=\square ; \square-20=25 ; 22=\square-$ $21 ; 6+\square+3=11$
It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference. E.g.

The link between the two may be supported by an image like this, with 47 being taken away from 72, leaving the difference, which is 25 .

The bar model should continue to be used, as well as images in the context of measures.

Towards written methods

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42

Missing number problems e.g. $\square=43-27$; 145-ロ= 138; 274-30= \square; $245-\square=195 ; 532-200=\square ; 364-$ 153 = \square
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving (see Y1 and Y2). Children should make choices about whether to use complementary addition or counting back, depending on the numbers involved.

Written methods (progressing to 3-digits)

Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation)

908
-305 603

For some children this will lead to exchanging, modelled using place value counters (or Dienes).

A number line and expanded column method may be compared next to each other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Missing number/digit problems: $456+\square=710$; $1 \square 7+6 \square=200 ; 60+99+\square=340 ; 200-90-80=$ $\square ; 225-\square=150 ; \square-25=67 ; 3450-1000=\square$; $\square-$ $2000=900$
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to 4-digits)

Expanded column subtraction with decomposition, modelled with place value counters, progressing to calculations with 4-digit numbers.
$1523-411=$

If understanding of the expanded method is secure, children will move on to the formal method of decomposition, which again can be initially modelled with place value counters.

Missing number/digit problems: $6.45=6+0.4+\square$; 119 - \square = 86; 1000000 - $\square=999$ 000; $600000+\square+1000$ = 671 000; $12462-2300=\square$

Mental methods

Children should continue to develop their methods, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to more than 4-digits)

When understanding of the expanded method is secure, children will move on to the formal method of decomposition, which can be initially modelled with place value counters.

Continue calculating with decimals, including those with different numbers of decimal places (mixed decimal numbers).

Multiplication

Understand multiplication is related to doubling and combing groups of the same size (repeated addition)

Washing line, and other practical resources for counting. Concrete objects. Numicon; bundles of straws, bead strings

Problem solving with concrete objects (including money and measures).

Use cuissenaire and bar method to develop the vocabulary relating to 'times' -
Pick up five, 4 times

Use arrays to understand multiplication can be done in any order (commutative)

Expressing multiplication as a number sentence using x Using understanding of the inverse and practical resources to solve missing number problems.

$7 \times 2=\square$	$\square=2 \times 7$
$7 \times \square=14$	$14=\square \times 7$
$\square \times 2=14$	$14=2 \times \square$
$\square \times \bigcirc=14$	$14=\square \times \bigcirc$

Develop understanding of multiplication using array and number lines (see Year 1). Include multiplications not in the 2,5 or 10 times tables.

Begin to develop understanding of multiplication as scaling (3 times bigger/taller)

$4 \times 3=12$

Doubling numbers up to $10+10$ Link with understanding scaling Using known doubles to work out double 2 digit numbers
(double 15 = double $10+$ double 5)

Towards written methods

Use jottings to develop an understanding of doubling two digit numbers.

Missing number problems
Continue with a range of equations as in Year 2 but with appropriate numbers.

Mental methods

Doubling 2 digit numbers using partitioning

Demonstrating multiplication on a number line jumping in larger groups of amounts
$13 \times 4=10$ groups $4=3$ groups of 4

Written methods (progressing to 2d x 1d)

Developing written methods using understanding of visual images

Develop onto the grid method

	10	8
3	30	24

Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

$$
\square 2 \times 5=160
$$

Mental methods

Counting in multiples of 6, 7, 9, 25 and 1000, and steps of $1 / 100$.

Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?)

Written methods (progressing to 3d x 2d)

Children to embed and deepen their understanding of the grid method to multiply up 2d x 2d. Ensure this is still linked back to their understanding of arrays and place value counters.

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

Mental methods

X by 10, 100, 1000 using moving digits ITP

Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$)

Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning)

Solving practical problems where children need to scale up. Relate to known number facts

Identify factor pairs for numbers

Written methods (progressing to 4d x 2d)

Long multiplication using place value counters as visual support.

Children to explore how the grid method supports an understanding of long multiplication (for $2 \mathrm{~d} \times 2 \mathrm{~d}$)

10	8
10	100
30	80
	30

Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits

Mental methods

Identifying common factors and multiples of given numbers
Solving practical problems where children need to scale up. Relate to known number facts.

Written methods

Continue to refine and deepen understanding of written methods including fluency for using long multiplication and multiplying decimals.

X	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0}$	$\mathbf{2}$
$\mathbf{1 0}$	10000	3000	400	20
8	8000	2400	320	16

321
$\times \quad 86$

1926
25680

27606

Division

Children must have secure counting skills- being able to confidently count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Children should be given opportunities to reason about what they notice in number patterns.

Group AND share small quantities- understanding the difference between the two concepts.

Sharing

Develops importance of one-to-one correspondence.
$15 \div 5=3$
15 shared between 5

Children should be taught to share using concrete apparatus.

$\div=$ signs and missing numbers	
$6 \div 2=\square$	$\square=6 \div 2$
$6 \div \square=3$	$3=6 \div \square$
$\square \div 2=3$	$3=\square \div 2$
$\square \div \nabla=3$	$3=\square \div \nabla$

Know and understand sharing and grouping- introducing children to the $\div \operatorname{sign}$.

Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations.

Grouping

Children should apply their counting skills to develop some understanding of grouping.

$15 * 3=5$

Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 .
$15 \div 5=3$ There are 3 groups of 5 .

Children should be able to find $1 / 2$ and $1 / 4$ and simple fractions of objects, numbers and quantities.

Grouping using a numberline

Group from zero in jumps of the divisor to find out 'how many groups of 3 are there in 15?'.
$15 \div 3=5$

Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see?

$\div=$ signs and missing numbers

Continue using a range of equations as in year 2 but with appropriate numbers.

Grouping and repeated subtraction

How many 3 's are in 15 ?
$15 \div 3$ can be modelled as:

Children need to be able to partition the dividend in different ways.
$48 \div 4=12$
10 groups of 4 , then 2 groups of 4 .

Remainders
$94 \div 5=18 \mathrm{r} 4$

Sharing - 94 shared between 5 . How many left over? Grouping - How many 5 s make 94 . How many are left over?

Place value counters can be used to support children apply their knowledge of grouping.
For example:
$60 \div 10=$ How many groups of 10 in 60 ?
$600 \div 100=$ How many groups of 100 in 600 ?

$\doteqdot=$ signs and missing numbers

Continue using a range of equations as in year 3 but with appropriate numbers.

Sharing, Grouping and using a number line

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding. Children should progress in their use of written division calculations:

- Using tables facts with which they are fluent
- Experiencing a logical progression in the numbers they use, for example

1. Dividend just over $10 x$ the divisor, e.g. $84 \div 7$
2. Dividend just over $10 x$ the divisor when the divisor is a teen number, e.g. $173 \div 15$ (learning sensible strategies for calculations such as $102 \div 17$)
3. Dividend over $100 x$ the divisor, e.g. $840 \div 7$
4. Dividend over $20 x$ the divisor, e.g. $168 \div 7$

All of the above stages should include calculations with remainders as well as without.
Remainders should be interpreted according
to the context. (i.e. rounded up or down to relate to the answer to the problem)

Chunking

Children will continue to think of the grouping whilst using subtraction and times tables when chunking.

Problem: $76 \div 2$

Solution: 76

$$
\frac{-20}{56}(10 \times 2)
$$

$\underline{20}(10 \times 2)$
36
$-\underline{20}(10 \times 2)$
$16(8 \times 2)$
Answer: $10+10+10+8=38$

Formal Written Methods

Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking ' to find a target number (see use of number lines above)

Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3-digit dividends. E.g. fig 1

Formal Written Methods

Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used (see link from fig. 1 in Year 4)
E.g. $1435 \div 6$

Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1 ? How could I share this between 6 as well?)

$\div=$ signs and missing numbers

Continue using a range of equations but with appropriate numbers

Chunking

Children will continue to explore division using chunking and to use visual aids to help support understanding when needed.
Quotients should be expressed as decimals and fractions

Formal Written Methods - long and short division

E.g. $1504 \div 8$

E.g. $7681 \div 20$

$2 0 \longdiv { 7 6 8 1 }$
60
168
160
81

Solution: $7681 \div 20=384 \mathrm{r} 1$
Children can be introduced to the idea of the DMS loop to help them remember the order for long division.

D-Divide
How many times will 2 go into 6 ? 3 times so the 3 goes above
 the 6 .

M
 - Multiply

Multiply the 3 and 2 and put the answer under the 6.

$\mathrm{S}_{- \text {subtract }}$

Subtract the 6 from the 6 and write the answer underneath.

Then Drag the 8 down and repeat

3
$2 \longdiv { 6 8 }$
$-6 \downarrow$
08

Calculation Policy

EYFS Guidance

Addition

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Subtraction

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Multiplication

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Division and fractions

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

GUIDANCE / MODELS AND IMAGES	KEY VOCABULARY
The ELG states that children solve problems, including doubling, halving and sharing. Children need to see and hear representations of division as both grouping and sharing. Division can be introduced through halving. Children begin with mostly pictorial representations linked to real life contexts: Grouping model Mum has 6 socks. She grouped them into pairs - how many pairs did she make? Sharing model I have 10 sweets. I want to share them with my friend. How many will we have each? Children have a go at recording the calculation that has been carried out.	halve share, share equally Roe each, two each, three each... group in pairs, threes... tens equal groups of divide divided by divided into left, left over

FRACTIONS

| GUIDANCE / MODELS AND IMAGES | KEY VOCABULARY |
| :--- | :--- | :--- |
| Although not explicit in the Development Matters document, the sharing model is a useful way of introducing young
 children to fractions and calculating with fractions. | As division vocabulary
 plus:
 fraction |
| Setting the problems in real life context and solving them with concrete apparatus will support children's
 understanding. | half |

